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Abstract

Numerous approaches have been developed to infer natural selection based on the comparison of polymorphism within
species and divergence between species. These methods are especially powerful for the detection of uniform selection
operating across a gene. However, empirical analyses have demonstrated that regions of protein-coding genes exhibiting
clusters of amino acid substitutions are subject to different levels of selection relative to other regions of the same gene.
To quantify this heterogeneity of selection within coding sequences, we developed Model Averaged Site Selection via
Poisson Random Field (MASS-PRF). MASS-PRF identifies an ensemble of intragenic clustering models for polymorphic
and divergent sites. This ensemble of models is used within the Poisson Random Field framework to estimate selection
intensity on a site-by-site basis. Using simulations, we demonstrate that MASS-PRF has high power to detect clusters of
amino acid variants in small genic regions, can reliably estimate the probability of a variant occurring at each nucleotide
site in sequence data and is robust to historical demographic trends and recombination. We applied MASS-PRF to human
gene polymorphism derived from the 1,000 Genomes Project and divergence data from the common chimpanzee. On the
basis of this analysis, we discovered striking regional variation in selection intensity, indicative of positive or negative
selection, in well-defined domains of genes that have previously been associated with neurological processing, immunity,
and reproduction. We suggest that amino acid-altering substitutions within these regions likely are or have been selec-
tively advantageous in the human lineage, playing important roles in protein function.

Key words: model averaged site selection, Poisson Random Field, natural selection, polymorphism, divergence, human
evolution.

Introduction
One of the principle goals in evolutionary biology is to identify
genetic variants under natural selection leading to adaptation.
Many statistical tests have been developed to detect selection
(Nei and Gojobori 1986; Hudson 1987; Tajima 1989;
McDonald and Kreitman 1991; Sawyer and Hartl 1992; Fay
and Wu 2000) based on divergent substitutions between spe-
cies (Nei and Gojobori 1986; Nielsen and Yang 1998), poly-
morphisms within species (Tajima 1989; Fay and Wu 2000), or
both (McDonald and Kreitman 1991; Sawyer and Hartl 1992).
In particular, among-species analyses compare the ratio of
substitution rates at replacement divergent (RD) and silent
divergent (SD) sites (dN/dS), and typically detect selective
events that occurred at a relatively deep time scale (Rocha
et al. 2006; Kryazhimskiy and Plotkin 2008). In contrast, poly-
morphism data within species reveal more recent episodes of

selection based on the allele frequency spectrum or patterns
of linkage disequilibrium (LD; Nurminsky et al. 1998; Parsch
et al. 2005; Nielsen et al. 2007; Aguileta et al. 2009; Saminadin-
Peter et al. 2012). Intermediate between these approaches,
however, are methods that infer selection using both poly-
morphism and divergence data (McDonald and Kreitman
1991; Sawyer and Hartl 1992; Bustamante et al. 2001; Zhu
and Bustamante 2005). A classic example of this latter ap-
proach is the McDonald–Kreitman (MK) test (McDonald
and Kreitman 1991) which compares the observed number
of replacement polymorphic (RP) and silent polymorphic
(SP) sites within species to the observed number of RD and
SD sites between species in a 2� 2 contingency table. An
advantage of this statistical test is that the incorporation of
polymorphism data increases its power to detect selection
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(Egea et al. 2008). Polymorphic and divergent sites also serve
as input for the Poisson Random Field (PRF) model, which
utilizes a theoretical framework based on strong selection,
infrequent mutation, and consequent independence of sites
to quantify selection intensity (Sawyer and Hartl 1992).

An inherent limitation of the MK test and other tests
based on the PRF model, however, is that they will not be
powerful when a large proportion of sites in the gene are not
under selection. Moreover, current implementations based
on Sawyer and Hartl (1992), Bustamante et al (2001), and
Zhu and Bustamante (2005) typically provide a single esti-
mate that represents a uniform selection intensity across the
entire length of a gene, implying that all amino acid replace-
ment sites experience the same selective pressure. While this
assumption could be valid for some cases of selection
(Schlenke and Begun 2003; Nielsen 2005; Nielsen et al. 2007;
Sackton et al. 2007; Kerns et al. 2008), studies have demon-
strated that selection can vary intragenically; specifically, pos-
itive or negative selection can operate on amino acid-altering
changes in small defined regions of genes (Holmes et al. 1992;
Hughes and Yeager 1998; Nielsen and Yang 1998; Yang and
Swanson 2002; Wagner 2007; Kerns et al. 2008; Tamborero
et al. 2013), resulting in intragenic heterogeneity of selection
intensity.

To increase the power to identify heterogeneity of selec-
tion intensity and thus characterize selection in protein-
coding genes, we have developed Model-Averaged Site
Selection with Poisson Random Field (MASS-PRF). MASS-
PRF identifies clusters of polymorphic and divergent variant
sites within genes (i.e., clustering models), and calculates the
probability of observing polymorphic and divergent variants
at each site within a given sequence across clustering models.
These probabilities are then used as entries in the PRF theory
to estimate selection intensity (gamma, c) on a site-by-site
basis along the length of a given gene. Using simulations, we
confirmed the reliability of MASS-PRF to identify highly local-
ized groups of nucleotide changes in coding sequence, and to
estimate the average probability of a variant appearing at
each site. To evaluate the effects of demography and recom-
bination on the selection inference by MASS-PRF, we used ms
(Hudson 2002) and INDELible (Fletcher and Yang 2009) to
perform coalescent simulations of neutrally evolving genes
under different demographic scenarios and levels of recom-
bination. These simulations demonstrated a modest impact
of demography and recombination on MASS-PRF inference
of selection intensity. To further illustrate the utility of MASS-
PRF, we applied our method to a set of human protein-
coding genes involved in neurological processing, immune
response and reproduction, gathering human polymorphism
data from the 1000 Genomes Project and divergence data
from a comparison with Pan troglodytes (the common chim-
panzee). These analyses identified signatures of positive selec-
tion (c> 4) at replacement sites within well-defined
regions of our genes, implying that these substitutions
are or have been selectively advantageous in the human
species. The results correlate well with prior studies that
demonstrated that many of these genic regions play a role
in gene function. The detection of genic regions under

selection is highly informative for biomedical studies fo-
cused on the identification of functionally relevant sites
involved in key biological processes, such as fertility,
host–pathogen interactions, and drug resistance.

New Approaches

Overview of MASS-PRF Algorithm
MASS-PRF operates on polymorphism and divergence data in
two steps: construction of clustering models (Step 1) and
estimation of selection intensity (Step 2).

Step 1: Construction of Clustering Models
MASS-PRF examines aligned sequences of length N, scoring
invariant sites as ‘0’ and variable sites as ‘1’. MASS-PRF itera-
tively partitions the entire sequence into three regions: (1) a
central region bounded by a start position (cs) and end po-
sition (ce), where (0� cs< ce�N - 1); (2) a starting region
flanking the central region; and (3) an ending region flanking
the central region. For example, for a gene with a length of
100 base pairs (bp), the start (cs) and end (ce) positions of
cluster model #1 could be nucleotide position 3 and nucleo-
tide position 4, respectively; for cluster model #2 the start and
end positions would be nucleotide position 3 and nucleotide
position 5, respectively; for cluster model #3 the start and end
positions would be nucleotide position 3 and nucleotide po-
sition 6, respectively. In this example, MASS-PRF hierarchically
generates start and end positions for all possible clustering
models (i.e., blocks of sequence) within a given gene, until the
central model encompasses all but two sites, and the flanking
models consist of sites 1 and 2 or sites 99 and 100. After
constructing this first set of models, MASS-PRF will recursively
partition the central and flanking sequences into all possible
sets of three regions (bounded by all possible start and end
positions). In summary, MASS-PRF will exhaustively construct
all possible models (i.e., blocks of sequence) from the start of
the gene to the end of the gene. MASS-PRF performs this
clustering model step separately for each of four categories of
mutations. These four categories are SP, SD, RP, and RD sites.
Our method counts the number of variant sites in the start-
ing (positions 1 to cs), central (cs to ce), and ending (ce to the
end of the gene) regions.

Then, MASS-PRF calculates the maximum likelihood of
observing SP, SD, RP, and RD within the central region
(denoted by a probability pc per site within the cluster; that
is, the number of variable sites divided by the total number of
sites within a given cluster; supplementary fig. S1,
Supplementary Material online) and the maximum likelihood
of observing SP, SD, RP, and RD in the neighboring regions
outside of the central region (denoted by a probability p0 per
site outside the cluster; that is, the total number of variant
sites outside the cluster divided by the total number of sites
outside a given cluster; supplementary fig. S1, Supplementary
Material online). Each clustering model (consisting of the
central and flanking regions) thus has a binomial likelihood
associated with it (fig. 1 and supplementary fig. S1,
Supplementary Material online). Optionally, one may esti-
mate model-averaged maximum likelihood probability for

Detection of Regional Variation in Selection Intensity . doi:10.1093/molbev/msx213 MBE

3007Downloaded from https://academic.oup.com/mbe/article-abstract/34/11/3006/4055061
by guest
on 15 November 2017

Deleted Text: Poisson Random Field (
Deleted Text: )
Deleted Text: -
Deleted Text: c
Deleted Text: m
Deleted Text: &thinsp;bp
Deleted Text: silent polymorphic (
Deleted Text: )
Deleted Text: silent divergent (
Deleted Text: )
Deleted Text: replacement divergent (
Deleted Text: )


FIG. 1. The workflow of the Model Averaged Site Selection via Poisson Random Field (MASS-PRF) approach. Step 1 consists of the construction of
clustering models. Step 2 consists of the estimation of model-averaged selection intensity c and its 95% model uncertainty intervals for each site.
Step 1 can be applied separately to aligned sequences of (A) replacement polymorphism (RP), (B) synonymous (silent) polymorphism (SP), (C)
synonymous divergence (SD), and (D) replacement divergence (RD). Step 2 uses observed probabilities of SP, SD, RP, and RD, and merges them into
PRF theory to estimate (E) selection intensity. RP and RD are used to estimate model-averaged selection intensities and their 95% model
uncertainty intervals (solid line in blue); SP and SD can be combined to represent intragenic inhomogeneity of mutation rate (dashed line in
red) for calculations of site-specific divergence time by default, or assuming homogeneity of mutation rate, can be replaced by gene-level
divergence time calculated from total counts of SP and SD, or species divergence time can be exogenously supplied by the user.
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each site. MASS-PRF averages the probability of observing SP,
SD, RP, and RD at each site within a given gene across models,
yielding a site-specific probability of being a variant. Visual
profiles of these probabilities over the gene sequence can be
generated, including a 95% model uncertainty interval for
these probabilities per site (fig. 1, insets A–D). Models are
penalized for overparameterization using the Akaike or
Bayesian Information Criteria (AIC or BIC).

Step 2: Estimation of Model-Averaged Selection Intensity and

Model Uncertainty Intervals for Each Site
Our estimate of the selection intensity at site i is the model-
averaged value of c across all or across a stochastic sample of
joint cluster models (for SP, SD, RP, and RD). The model
uncertainty interval is calculated as the central 95% of joint
model probability weight. The weight of each joint model is a
product of the model weights for RP, RD, SP, and SD models.
Model-averaged c is then calculated by weighing every c as-
sociated with each joint model. Models are penalized for
overparameterization using the AIC or BIC. To estimate
95% model uncertainty intervals for selection intensity c,
we developed and implemented two algorithms: (1) an
exhaustive option for sampling cluster models that should
be selected for analysis of shorter genes where intensive
computation is not prohibitive, or (2) a stochastic option
for sampling cluster models that should be selected for anal-
ysis of longer genes in a relatively short time and with a high
level of accuracy and precision over sufficient iterations.

MASS-PRF calculates the site-specific selection intensity (c,
fig. 1, inset E) with each set of four cluster models (SP, SD, RP,
and RD) by providing the model-based variant probabilities at
each site to the classic PRF model (Sawyer and Hartl 1992).
More specifically, MASS-PRF solves for c, setting the ratio of
the expected number of RD and RP sites from Sawyer and
Hartl (1992) equal to the ratio of the estimated probabilities
of RD and RP appearing at each site that is calculated in “Step
1” for each model (fig. 1), and using the site-specific proba-
bilities of SP and SD variants from the cluster models to es-
timate the expected neutral divergence parameter in the PRF
model. The patterns of aggregation or grouping of variant
sites provide the means for MASS-PRF to estimate regional
selection intensity.

Results

Analysis of Clustering of Variant Sites with
Polymorphism and Divergence Data Using MASS-PRF
Theoretically, variants in coding sequences can be distributed
in multiple ways, ranging from a random distribution of var-
iants across coding sequences to localized clustering of var-
iants within well-defined regions of genes. To assess how well
MASS-PRF detects clusters of nucleotide substitutions, we
simulated protein-coding sequences of 1,200 bp length, for
which the numbers of SP, RP, SD, and RD sites were assigned
a priori (see Materials and Methods, fig. 2). Variants were
distributed within clusters of 100–1,200 bp (cluster size
increased in increments of 100 bp). We performed 100 repli-
cates for SP, SD, RP, and RD. For each replicate incorporating

all four variant types, we calculated the probability of ob-
serving SP, SD, RP, and RD per site across the gene esti-
mated by MASS-PRF and using an unclustered model in
which all sites had identical probabilities of being variant.
We calculated the accuracy and precision of MASS-PRF and
the unclustered model at estimating the actual probabilities
of SP, SD, RP, and RD. The extent to which the estimated
and expected probability distributions of variants differed
was assessed using Kullback–Leibler (KL) divergence (0 indi-
cates no difference, a positive value or negative value indi-
cates poor fit). The average KL (D) and the inverse precision
(r) were close to zero (fig. 2), indicating minimal error be-
tween the estimated and expected probabilities of each site
being a variant in the clustered model (MASS-PRF). In con-
trast, however, in the nonclustered model, D and r diverged
positively from zero (fig. 2). Overall, these results indicate
that MASS-PRF is able to calculate the probability of variant
sites clustered in relatively small genic regions with a high
level of accuracy and precision.

Coalescent Simulations Assess Robustness to
Demographic and Recombination History
To assess the effects of demography and recombination on
the performance of MASS-PRF, we simulated six sets of 20
neutrally evolved genes (for a total of 120 genes) undergoing
three demographic events (bottleneck, constant, and expan-
sion) with and without genetic recombination. MK tests
(McDonald and Kreitman 1991) of the simulated data did
not reject the null hypothesis that most genes (98%; supple-
mentary table S1, Supplementary Material online) were neu-
trally evolving. We then applied MASS-PRF on the simulated
data specifying two distinct options: (1) a fixed divergence
time of 6 Ma (million years ago), and (2) a site-specific diver-
gence time calculated based on the clustering of silent sites,
which is the default option in MASS-PRF. Using the simulated
data analyzed by MASS-PRF, we estimated the false positive
rate (FPR) associated with inference of selection (c<�1 or
c> 4, as defined in Materials and Methods). The FPR was
<2% for each of the six scenarios using the site-specific di-
vergence time in MASS-PRF (supplementary table S1,
Supplementary Material online), suggesting modest impacts
of demography and recombination. In particular, the FPRs
without recombination and with a fixed divergence time of
6 Ma were 12% (Bottleneck), 6% (Constant), and 1%
(Expansion; supplementary table S1, Supplementary
Material online). In contrast, for all three demographic sce-
narios without recombination and with a divergence time
that was estimated using the site-specific divergence time,
the FPR ranged from 1% to 2% (supplementary table S1,
Supplementary Material online). Adding recombination
when divergence time was estimated site-specifically yielded
the same range of FPRs (1–2%; supplementary table S1,
Supplementary Material online), whereas adding recombina-
tion when divergence time was fixed at 6 Ma led to FPRs that
ranged from 1% to 8% (supplementary table S1,
Supplementary Material online). These results indicate that
the effects of demography and recombination are mitigated
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by usage of the site-specific divergence time compared with
specifying a fixed lineage divergence time of 6 Ma.

Application of MASS-PRF to Empirical Data
As an initial validation, we applied MASS-PRF to a set of genes
(SLC6A5, GRIN2C, RNASEL, IL18RAP, TGM4, WBP2NL, and
SPAG5) from the 1,000 Genomes Project (supplementary ta-
ble S2, Supplementary Material online) that were previously
inferred to be under selection based primarily on the ratio of
divergence at replacement and silent sites between species
(Bustamante et al. 2005; Clark and Swanson 2005; Kosiol et al.
2008). The tests for selection used in these prior studies
yielded single gene-wide estimates for each gene. For example,
estimates of c for RNASEL, IL18RAP, SPAG5, and GRIN2C were
5.3 (C.I. 0.6–14.6), 8.3 (C.I. 1.2–19.4), 5.3 (C.I. 0.7–14.3), and
8.2 (C.I. 1.0–19.6), respectively, based on the mean of the
posterior distribution of c for each gene in Bustamante
et al. (2005). Kosiol et al. (2008) did not estimate c for
WBP2NL and SLC6A5 genes, but computed P values using
a likelihood ratio test for selection (6� 10�4 and
3� 10�4, respectively); the estimate of dN/dS for TGM4
was 2.14 (P¼ 2� 10�3; Clark and Swanson 2005). MASS-
PRF analysis also indicated that these loci were under
selection, and demonstrated that selection intensity was
not constant across these genes. Instead, our data showed
that selection varied across sites, revealing adaptive evo-
lution within defined regions of protein-coding genes.

On the basis of our method, we detected weak (c> 4;
lower bound< 0), moderate (c> 4; 0< lower bound< 4),
and strong (c> 4; lower bound> 4) evidence for positive
selection in specific genic regions. The lower bound refers

to the lower 95% model uncertainty interval for the estimate
of c, and c is the selection intensity (2Nes, where Ne is the
effective population size and s is the canonical population
genetic selection coefficient). In SLC6A5, for example, we
found localized peaks of c, indicative of positive selection
(c> 4; lower bound< 0), encompassing fixed replacement
sites 316, 318, 329, 371, and 460 in exon 2 (fig. 3A, supple-
mentary table S3, Supplementary Material online). In a prior
study, the deletion of exons 2 and 3 resulted in the loss of part
of the large cytoplasmic N-terminus of SLC6A5 protein, inhib-
iting synaptic transmission in mammals, and suggesting that
these exons serve an important function (Gill et al. 2011). Our
analysis of GRIN2C revealed two distinct peaks of c; one peak
(c> 4; lower bound< 0) occurred in a region encompassing
replacement substitutions at sites 67, 68, 212, 266, 272, and
299 in exon 1 and the other peak (c> 4; 0< lower
bound< 4) at site 2551 in exon 12 (fig. 3B, supplementary
table S3, Supplementary Material online). This inference of
selection is supported by other studies reporting that exon 1,
encoding amino acid residues in the N-terminal domain of
GRIN2C, is responsible for the functional differences between
members of the GRIN2 gene family (Teng et al. 2010). The
signal of positive selection present in exon 12 of GRIN2C
suggests that replacement substitutions within this region
have contributed to the functional divergence of this gene.

Our analysis also uncovered strong evidence for positive
selection within specific regions of genes that are involved in
immunity and inflammation (Fumagalli et al. 2011). In
RNASEL, for example, we inferred positive selection (c> 4;
0< lower bound< 4) at replacement sites 8, 83, 107, 119,
140, 212, and 219 in exon 2, as well as 640, 648, and 667 in

FIG. 2. Comparison of accuracy and precision based on the Kullback–Leibler (KL) divergence between simulated probabilities and estimated
probabilities for the clustered and nonclustered model. The KL divergence quantifies the divergence of the distribution of expected (simulated)
probabilities from the distribution of estimated probabilities. A value of KL divergence closer to zero indicates that the estimated probability from
the clustered (green triangles) or nonclustered model (red triangles) match the expected probability imposed within the simulation. The
simulated 1200 bp sequences featured variant sites restricted to cluster sizes (lengths of regions with all variants) ranging from 100 bp (a tight
cluster) to 1,200 bp, incrementing cluster size by 100 bp. Analyses of accuracy (solid lines) and precision (dashed lines) are displayed for four classes
of variants: (A) synonymous (silent) polymorphism, (B) replacement polymorphism, (C) synonymous divergence, and (D) replacement divergence.
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exon 5 (c> 4; lower bound > 4; fig. 3C, supplementary table
S3, Supplementary Material online), which encode amino
acids in regions of RNASEL that play a role in antiviral

immune response. This localization of selection agrees with
Wagner (2007), who identified a similar clustering of amino
acid substitutions in exon 2, encoding amino acid residues

FIG. 3. Profiles of selection intensity (c) across nucleotide positions for seven genes: (A) SLC6A5, (B) GRIN2C, (C) RNASEL, (D) IL18RAP, (E) TGM4, (F) WBP2NL, (G)
SPAG5.A line indicates themodel-averagedc (red if the lowerboundofc> 4or if theupperboundofc<�1, otherwise blue),anda grey bandindicates the95%
model uncertainty interval. The black horizontal line in each plot indicates c¼ 0. Each figure reports synonymous polymorphic sites (Ps), replacement
polymorphic sites (Pr), synonymous divergent sites (Ds), replacement divergent sites (Dr), and the Fisher Exact P value for the corresponding MK test.
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that bind the activator molecule 2-5A, based on a compara-
tive analysis of human and chimp anzee protein-coding
sequences. These results imply strong positive selection for
variants in this genic region. We suggest that the substitutions
clustered in exon 5 could also encode functionally important
protein domains. In IL18RAP, our results indicated that fixed
replacement substitutions at positions 186, 222, 231, and 258
in exon 2 (fig. 3D, supplementary table S3, Supplementary
Material online) were under strong positive selection (c> 4;
lower bound> 4), likely in response to pressure from
pathogens.

We also found evidence for adaptive evolution at genes
associated with human sexual reproduction. In TGM4, for
example, we detected positive selection (c> 4; lower
bound> 4) at positions 39, 51, 225, and 240 in exon 2 (fig.
3E, supplementary table S3, Supplementary Material online).
Indeed, a recent in vitro study demonstrated that exon 2
influences the expression of TGM4 isoforms (namely, 4-L, -
M and -S; Choi et al. 2010), consistent with our inference that
substitutions within this genic region are likely functionally
important. We also estimated a peak of c> 4 (but with lower
bound< 0) encompassing fixed replacement sites 720, 729,
732, and 741 in exon 6 of WBP2NL (fig. 3F, supplementary
table S3, Supplementary Material online). The corresponding
amino acids 240, 243, 244, and 247 are located in functional
repeat domains of the sperm-specific WBP2NL protein (Wu
et al. 2007). Our analysis of SPAG5 (fig. 3G, supplementary
table S3, Supplementary Material online) revealed high peaks
of c (c> 4; 0< lower bound< 4) at sites 2520 and 2628 in
exon 15, encoding divergent sites that bind the kinetochore-
localized astrin (KNSTRN) protein which plays a role in chro-
mosome alignment and normal cell division (Dunsch et al.
2011).

In addition to the seven genes previously inferred to be
under positive selection in Bustamante et al. (2005), Clark and
Swanson (2005), Kosiol et al. (2008), we applied MASS-PRF to
an additional set of 51 protein-coding genes that had not
been previously inferred to be adaptively evolving in the hu-
man lineage (Bakewell et al. 2007; Gaya-Vidal and Alba 2014).
Selection intensities varied among and within genes (fig. 4).
Graphical depictions of the levels of selection across domains
of four exemplars arranged in a 2� 2 grid of panels typify our
findings across these 51 genes: (1) SLC8A1, inferred to be
under selection both by MASS-PRF and the MK test (a
Yes–Yes scenario); (2) NT5C1B, inferred to be under selection
by MASS-PRF but not MK (a Yes–No scenario); (3) MGAM,
not inferred to be under selection by MASS-PRF, but inferred
to be under selection by the MK test (a No–Yes scenario); and
(4) TPH2, not inferred to be under selection by either MASS-
PRF or the MK test (a No–No scenario). More specifically, our
analysis of SLC8A1 showed a strong signature of positive se-
lection spanning replacement sites in exon 2 (fig. 4A) that
encodes amino acids in the calcium-binding domain of the
SLC8A1 cell membrane protein. We also observed a high peak
in c at positions in exon 5 of NT5C1B (encompassing replace-
ment sites 812, 813, 815, 819, 829, and 845; supplementary
table S3, Supplementary Material online) consistent with a
model of positive selection (fig. 4B). While the precise

function of these substitutions at NT5C1B is unknown, our
analysis suggests that these nucleotides are likely to be bio-
logically relevant sites. Interestingly, we did not observe ele-
vated peaks of c at MGAM using MASS-PRF, in contrast to
the findings from our MK analysis (fig. 4C). We also did not
find evidence for positive selection at TPH2 (fig. 4D), which is
consistent with the current literature (McKinney et al. 2009;
Chen and Miller 2012; Taub and Page 2016). Examples of
other genes that fell within each of the above four categories
can be found in supplementary figure S2 and Supplementary
Material online. The family-wise error rates of MK tests can be
found in supplementary table S4, Supplementary Material
online.

Discussion
Here, we have shown that the MASS-PRF algorithm has
power to detect localized groups of amino acid changes
within genes using an unbiased approach that does not re-
quire a priori knowledge of cluster size or count. Our simu-
lation results also demonstrated that MASS-PRF reliably
estimates the maximum likelihood probability of each site
being a variant with a high level of accuracy and precision.
Furthermore, using this algorithm, we identified potential im-
portant targets of natural selection, within small genic regions
in a set of protein-coding genes, illustrating that MASS-PRF
can provide additional insights into the process of adaptive
evolution. Indeed, because classical tests assume a uniform
selection intensity across the entire gene, the phenomenon of
clustered adaptive change in protein-coding sequence genes
is a case of selection that has been understudied in evolu-
tionary genetics. Most importantly, our coalescent simula-
tions demonstrated that MASS-PRF is robust to
demographic and recombination events.

MASS-PRF does not assume homogeneity of selection in-
tensity across sites. Accordingly, it exhibited power to detect
different regions in individual genes that are experiencing
different intensities of selection. The level of selection inferred
in the PRF framework is scaled to a model of neutral evolution
typically based on the observed silent site polymorphism and
divergence (Sawyer and Hartl 1992). MASS-PRF uses an un-
biased approach to detect localized groups of amino acid
changes within genes and does so without a priori knowledge
of cluster size or count. Indeed, MK sliding windows have
been used dating back to studies of mitochondrial genes
(Rand et al. 1994). However, in addition to their lack of formal
statistical tractability, results generated by sliding window
analyses have been challenging to interpret and have not
been widely accepted: the problem is that it is very hard to
decide on an appropriate sliding window size a priori for the
analysis, and that the decision on the size of the sliding win-
dow dramatically affects the outcome of the analysis, which
significantly lessens the persuasiveness of findings based on
this approach. Moreover, the “appropriate size” of sliding
window will likely change across a given gene depending on
the size of component functional domains (e.g., transmem-
brane domains, extracellular domains, DNA-binding domains,
etc.) and the consequent clustering of selected sites. That is to
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say, if window size is too small or too large, it is possible to
miss signals of selection operating within a particular genic
region. For genome-wide analyses, this issue is compounded
by the fact that genes will have widely varying counts of
polymorphic and divergent sites, so determining an appro-
priate sliding window size automatically for each of the thou-
sands of genes to be analyzed will be very difficult. So what
would be better would be some approach that generates all
possible sliding window sizes, including different sliding win-
dow sizes in different parts of the gene, and integrates over
them all to give a single, statistically supported estimate for
each site in a gene. That analysis is in essence what MASS-PRF
does, but in a maximum likelihood model averaging frame-
work linked to Sawyer and Hartl‘s PRF (Sawyer and Hartl
1992).

MASS-PRF shares some limitations in common with many
existing methods for detecting positive selection. For exam-
ple, MASS-PRF assumes that species have persisted at a con-
stant population size. However, in general, biases in inferences
of selection can arise when the populations have experienced
recent bottlenecks or expansions, resulting in either an excess
of intermediate frequency polymorphisms (indicative of bal-
ancing selection) or an excess of low-frequency polymor-
phisms (indicative of positive or weak purifying selection),
respectively (Eyre-Walker 2002; Parsch et al. 2009). Though
demographic events can mimic gene-wide signatures of se-
lection, we do not expect that changes in population size
would lead to localized clustering of multiple protein-
altering sites in small genic regions, violating the predicted
uniform distribution of mutations in gene space under

FIG. 4. Four scenarios for comparing selection inference by MASS-PRF and the MK test. (A) SLC8A1 was inferred to be under selection both by
MASS-PRF and the MK test (P¼ 0.02); (B) NT5C1B was inferred to be under selection by MASS-PRF, but not MK (P¼ 0.67); (C) MGAM was not
inferred to be under selection by MASS-PRF, but was inferred to be under selection by the MK test (P¼ 0.04); (D) TPH2 was not inferred to be
under selection by either MASSPRF or the MK test (P¼ 1). A line indicates the model-averaged c (red if the lower bound of c> 4 or if the upper
bound of c<�1, otherwise blue), and a grey band indicates the 95% model uncertainty interval. The black horizontal line in each plot indicates
c ¼ 0. Each figure reports synonymous polymorphic sites (Ps), replacement polymorphic sites (Ps), synonymous divergent sites (Ds), replacement
divergent sites (Dr), and the Fisher Exact P value for the corresponding MK test.
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neutral evolution (Wagner 2007). Our evaluation of demo-
graphic events, such as bottlenecks or exponential growth,
revealed modest effects of demography on the estimation of
selection intensity using simulated data. We argue that this
modest impact of demography is likely due to the fact that
MASS-PRF does not estimate selection using the site fre-
quency spectrum, which is known to be highly sensitive to
the effects of demographic history.

MASS-PRF, like other MK and PRF methods, assumes an
infinite allele model and independence between sites.
Whereas the infinite allele model is a reasonable approx-
imation for most eukaryotic populations (Desai and
Plotkin 2008), the assumption of free recombination be-
tween sites is less realistic. Typically, over time recombi-
nation breaks up genomic regions containing variants,
leading to shorter blocks of LD, and thus less correlation,
among nucleotide sites on the same chromosome. Within
a gene, LD is expected to be present. However, the pres-
ence of replacement variants in close proximity—
particularly fixed replacement substitutions—cannot be
easily explained by LD alone. Under a scenario of frequent
rapid adaptation, for instance, it is conceivable that neu-
tral sites—including neutral replacement sites—could
‘sweep’ to fixation in a given species due to genetic hitch-
hiking with a selected mutation in the deep past, poten-
tially leading to a clustering of sites and a subsequent bias
in inferred selection intensity. Though more explicit
modeling of the varying degrees of LD between sites, de-
mography and different scenarios of selection is challeng-
ing, quantifying the effects of these factors on estimates of
natural selection is an important topic that requires more
in-depth study in evolutionary biology (Kryazhimskiy and
Plotkin 2008; Zeng and Charlesworth 2010; Racimo and
Schraiber 2014).

Our simulations demonstrated, however, modest effects of
demography and levels of recombination on the estimation
of selection intensity using MASS-PRF; these effects can be
further mitigated by implementation of a site-specific diver-
gence time based on model-averaged clustering of silent sites.
Our analysis of coalescent simulations demonstrated that
estimating silent site clustering helps to alleviate the effects
of intragenic recombination and demographic changes. This
improvement arises because the silent site clustering allows
MASS-PRF to accommodate different coalescent histories
(Arenas and Posada 2010) as well as different mutation rates
(Barr et al. 2007) across a given gene. Assuming a constant
mutation rate, detection of clustering of silent site polymor-
phism enables better quantification of the depth of the coa-
lescent tree associated with intragenic sequence. Dense silent
site polymorphism will tend to occur in regions of genes with
deep coalescence, whereas sparse silent site polymorphism
will tend to occur in regions of genes with recent coalescence
(Arenas and Posada 2010; Ferretti et al. 2013). For example, if
the first half of a given gene has a deep coalescence among
alleles and the second half of the same gene has a shallow
coalescence among alleles, the first half will have a greater
number of silent site polymorphisms (and, under neutrality,
RPs as well). The silent site clustering we perform will then

detect this difference between the first and second half, at-
tribute different probabilities of silent sites to the two halves
of the gene, and thus—in principle—accurately estimate 2Nes
despite the difference in coalescent history.

By default MASS-PRF uses this site-specific divergence
time, quantifying intragenic silent site polymorphism which
can reflect any intragenic recombination and demographic
events that may have occurred, and incorporating those
model-averaged site-specific divergence times in calculating
the background silent mutation rate for each site.
Incorporating the silent site clustering helps to alleviate error
in the estimation of the level selection that arises as a conse-
quence of recombination and demography. Our simulations
show that this is true in practice as well as in principle. Overall,
our simulation results with MASS-PRF are in broad agree-
ment with methods, such as the MK test, that have demon-
strated a modest sensitivity to the effects of demography
(Nielsen 2001, 2005; Eilertson et al. 2012) and recombination
(Kreitman 2000) on the detection of selection using polymor-
phism and divergence data.

The theoretical framework underlying MASS-PRF per-
mits three ways of parameterizing the neutral model.
First, silent sites can be analyzed for clustering which can
arise due to differential mutation rate variation across sites
or differential intragenic coalescence due to recombination
(reflecting the baseline clustering of mutations under a neu-
tral model). Clustering of silent site polymorphism and di-
vergence enables the estimate of selection to incorporate
heterogeneous rates of mutation across sites or heteroge-
neous histories due to differential intragenic coalescence.
Alternatively, intragenic mutation rate can be specified as
homogeneous and gene-wide coalescence can be assumed
by calculating divergence time with gene-wide counts of
polymorphic and divergent silent sites, as in the original PRF
framework. Lastly, users of MASS-PRF can specify species
divergence time as a parameter. When specifying a diver-
gence time, selection estimates are driven only by the clus-
tering of RDs relative to the clustering of RPs, avoiding bias
caused by the effects of weak selection on silent sites. While
in general silent sites are believed to be selectively neutral, a
few studies have demonstrated that silent sites in coding
sequences can be subject to weak selection (Akashi 1995;
Ohta 2002; Singh et al. 2007) due to their functional roles in
mRNA splicing (Chamary and Hurst 2005), RNA editing
(Shabalina et al. 2006, 2013) and protein translation
(Akashi 1994). A bias in estimates of selection based only
on divergence data (dN/dS) can also arise as a consequence
of relaxed functional constraint, in which the total number
of replacement substitutions within genes is increased,
mimicking genetic signatures of positive selection
(Lazzaro 2005; Arbiza et al. 2006; Wagner 2007). However,
simulations have been conducted to argue that clusters of
amino acid changes in protein-coding genes cannot be at-
tributed solely to relaxed functional constraint (Wagner
2007). Accordingly, estimates of selection by MASS-PRF
would be less affected by relaxed functional constraint
than other approaches that assume uniform selection
intensity.
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Unlike MASS-PRF, many extended PRF models
(Bustamante et al. 2001; Zhu and Bustamante 2005) use
the full allele-frequency spectrum of polymorphism data
(i.e., the number of polymorphisms at a frequency 1 out of
n, 2 out of n, . . . (n� 1) out of n, where n is the number of
sequences sampled) to infer selection intensity relative to
neutrality. However, there are disadvantages to this approach
in the MASS-PRF framework. Firstly, breaking down polymor-
phisms into the allele frequency spectrum can provide addi-
tional information regarding selection, but doing so also
increases the sensitivity of inferred selection intensity to the
effects of demographic events, leading to false signals of se-
lection (Bustamante et al. 2001). Like the MK test itself
(Nielsen 2001, 2005; Eilertson et al. 2012), MASS-PRF mini-
mizes its sensitivity to demography by utilizing counts of SP
and RP sites rather than site frequency data. Moreover, any
gain in power that could be attained by differentiating along
the frequency spectrum would be more than offset by the
consequent requirement to cluster sites independently for
each frequency category of the spectrum, which would
both impose a considerable computational cost and weaken
the precision with which MASS-PRF clusters polymorphic
sites. Each additional allele frequency category induces smaller
partitions of the polymorphic sites that can be analyzed for
within-category clustering; for individual genes, obtaining suf-
ficient polymorphism can sometimes be the limiting factor
even for an approach that does not differentiate among allele
frequencies. If it is not the case that there is heterogeneity of
selection intensity across sites and/or the detection of selec-
tion is focusing on one or more whole genes, gene-level
approaches using this information, such as SnIPRE
(Selection Inference using Poisson Random Effects; Eilertson
et al. 2012), would be more appropriate methods to apply.

Other standard frequency-based approaches, such as
Tajima‘s D and Fay and Wu‘s H (Tajima 1989; Fay 2000),
and haplotype-based tests, such as EHH and iHS (Sabeti
et al. 2002; Voight et al. 2006), have also been used to inter-
rogate genomes for nucleotide positions that may have been
targets of classical selective sweeps. However, these methods
primarily provide insight into selection operating at a more
recent time scale than do MK or PRF methods, which detect
advantageous mutations that are fixed in one species relative
to another species after their divergence at deeper time scales.
Therefore, it would not be appropriate to use methods
designed to detect recent selection at a microevolutionary
level (i.e., within populations) to capture selective events that
occurred over a deeper time scale at a species level. In par-
ticular, genetic signatures typically used by frequency- and
haplotype-based methods to infer selection (such as reduced
homozygosity and long-range haplotypes) persist only until
recombination and mutation restore diversity at the selected
locus over time (Vitti et al. 2013). Overall, MASS-PRF identifies
genetic differences that have arisen due to selection between
species (rather than within species; Vitti et al. 2013).

Application of MASS-PRF to Empirical Data
At a molecular level, selection can be inferred from nucleotide
changes in coding sequence data from related lineages

(Bakewell 2008). While standard tests of neutrality summarize
patterns of diversity and are weakened by an assumption of
homogeneity of selection pressure across genes, MASS-PRF is
highly informative for inferring selection at coding genes, even
within small genic regions in analyses of sequence data in
related species. Thus, MASS-PRF is a viable method for detect-
ing selection in genes that appear to have experienced local
selection, complementing existing approaches aimed at iden-
tifying signatures of adaptive evolution.

In the present study, we detected moderate evidence for
positive selection in well-defined regions of GRIN2C (fig. 3B)
and SLC6A5 (fig. 3A). These signals of positive and negative
selection indicate regions of the genes that likely are, or have
been, functionally important (Biswas and Akey 2006; Bakewell
2008). Amino acids in GRIN2C and SLC6A5 that are positively
selected according to MASS-PRF interact with amino acids in
other proteins; for example, amino acids in GRIN2C interact
with proteins playing roles in learning, memory and synaptic
communication (Teng et al. 2010), and amino acids in
SLC6A5 interact with proteins playing roles in rapid sound
localization (Lin 2011). We also presented strong evidence for
selection at replacement sites in SLC8A1 (fig. 4A), which enc-
odes a membrane protein that regulates intracellular calcium
concentrations in excitable cells, such as neurons, which is an
important homeostatic function (Khananshvili 2013). Indeed,
one of the key behavioral traits that defines modern Homo
sapiens is complex cognition, and archaeological evidence has
suggested that this modern behavioral trait arose at a rela-
tively early stage of human evolution (Campbell et al. 2014).
However, the development of knowledge (such as, techno-
logical advances in stone tools) and the transmission of this
information within and between generations likely required
changes in cognitive processes, such as memory and learning,
in modern H. sapiens (Bakewell 2008; Heyes 2012). Moreover,
changes in hearing sensitivity in humans might have been
beneficial for understanding spoken language (Martinez
et al. 2004). Therefore, it is not unexpected that selection
for mutations at genes associated with these traits occurred
in the human lineage after the divergence between the ances-
tors of modern humans and our closest living relative, the
common chimpanzee.

In the immune system, well-known genes that regulate
host defense against infection, such as the MHC (Hughes
et al. 1990) and leukocyte antigens (Vallender and Lahn
2004), are characterized by a high level of replacement sub-
stitutions. In the present study, we identified signatures of
selection at replacement substitutions in exon 2 of the
RNASEL gene (fig. 3C), corresponding to amino acids that
participate in the binding of the 2-5A protein, a key step in
initiating the cleavage of viral RNA by the RNASEL enzyme
(Tanaka et al. 2004). Furthermore, the strong signals of selec-
tion at replacement sites in the well-defined regions of
IL18RAP (fig. 3D) suggest that these substitutions also play
a role in disease resistance. Specifically, IL18RAP encode pro-
teins that interact with other immune-related proteins to
form complexes that trigger an antiviral response (Fink and
Grandvaux 2013; Blaszczyk et al. 2015). Although the function
of these replacement sites are currently unknown, these genic
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regions should be the focus of future studies aimed at under-
standing the evolution and genetic basis of human-specific
biological traits. Lastly, results from our MASS-PRF analysis
have implications for the design of interventions against in-
fectious disease. Specifically, estimates of c along DNA
sequences can be informative for identifying functionally im-
portant regions of proteins (encoded by genes under selec-
tion), and this information may be of potential interest to
scientists who develop protein-based therapeutics for the
treatment and prevention of viral infections (Wagner 2007;
Koellhoffer et al. 2014).

Like the genes associated with immune response, genes
involved in sexual reproduction also evolved under strong
positive selection (Torgerson et al. 2002). We identified pos-
itive selection at amino acid-altering nucleotides in exon 6 of
WBP2NL (fig. 3F) corresponding to the repeat motif
(YGAPPLG) in the WBP2NL protein. A recent in vitro study
showed that the presence of YGXPPXG repeating motifs
increases the binding specificity of WBP2NL to proteins in
the oocyte leading to the activation of DNA and protein
synthesis in the egg after fertilization (Wu et al. 2007).
Other examples of functional mutations under positive selec-
tion include a replacement substitution at site 2628 in exon
15 of SPAG5 (fig. 3G) that participates in the binding of
KNSTRN, a key protein involved in chromosome segregation
during mitosis. Additionally, sites under selection in exon 2 of
TGM4 (fig. 3E) encode amino acids that bind to the surface of
sperm to minimize the activation of an antisperm immune
response in the female reproductive tract (Clark and Swanson
2005). Thus, the replacement substitutions that we identified
using MASS-PRF appear to play critical roles in species-
specific fertilization, gamete recognition and human develop-
ment. Lastly, replacement sites in exon 5 of NT5C1B (fig. 4B)
also exhibited high levels of c indicative of positive selection.
Although the function of these substitutions remains unclear,
our results suggest that these nucleotide substitutions in exon
5 likely represent targets of selection associated with gene
function.

In addition, our analysis of SLC8A1 and TPH2 by MASS-PRF
showed consistent selection results with MK tests (fig. 4A
and D). Interestingly, we did not observe statistically signifi-
cant peaks of c within MGAM using MASS-PRF, in contrast to
a statistically significant result for MGAM using the MK test
(P¼ 0.04; fig. 4C). Examination of the distribution of the num-
ber of divergent and polymorphic sites (Ps¼ 28, Pr¼ 48,
Ds¼ 27, and Dr¼ 20) reveals that significance of the MK
test was driven by an excess of polymorphic replacement
sites, which is consistent with a scenario of balancing selec-
tion. Because the PRF model is a model of directional selec-
tion, it is entirely appropriate that MASS-PRF would not yield
a statistically significant peak of c in MGAM: this gene does
not appear to be under positive selection. In contrast, MASS-
PRF analysis of NT5C1B revealed strong selection in a re-
stricted region close to nucleotide position 800. NT5C1B
does not demonstrate statistically significant selection across
the entire gene (P¼ 0.67) using the MK test (fig. 4B). MASS-
PRF indicates that the action of selection on this gene is

limited to a small region—therefore it would be unlikely
that any gene-wide methodology would detect this selection.
While the genes analyzed in this study may have evolved in
direct response to environmental pressures, it is possible that
replacement substitutions in these genes could have occurred
due to co-evolution. Specifically, co-evolution of genes could
arise through protein/protein interaction in which compen-
satory changes in one protein occurs in response to changes
in a partner protein directly under positive selection. That is
to say, amino acid changes in one protein under selection
could exert pressure on another protein to maintain partic-
ular amino acid changes that facilitate continued protein/
protein interactions (Qian et al. 2015). Intriguingly, a recent
genome-wide analysis of 1000 Genomes data reported strong
signatures of recent selection among interacting proteins in-
volved in signal transduction, neurogenesis and immune
function, suggesting that the process of co-evolution has
influenced patterns of variation in human genes (Wyckoff
et al. 2000; Qian et al. 2015). Similar results have been de-
scribed for genes associated with immunity and reproduction
in Drosophila (Obbard et al. 2006, 2009). Thus, MASS-PRF can
provide additional insights into the evolution of gene–gene
(or protein–protein) interactions.

In general, because RD substitutions are fixed in the hu-
man lineage, it can be argued that these changes are likely
ancient, predating both the separation of humans into differ-
ent subpopulations beginning �90,000–100,000 years ago in
Africa and the migration of humans across the globe from
Africa beginning �80,000 years ago (Campbell et al. 2014).
Given the recent increase in genome sequence data from
Neanderthal remains, MASS-PRF could be applied in future
studies to investigate changes that evolved uniquely in
H. sapiens since the divergence of modern humans and
Neanderthals from a common ancestor �400,000–
500,000 years ago. Overall, MASS-PRF is an informative tool
for detecting functional targets of selection at relatively deep
evolutionary time scales and for understanding the origins of
species-specific traits.

Materials and Methods

Identifying Clustering Models Using Observed
Polymorphism and Divergence Data
To analyze patterns of variation within and between species,
we aligned homologous sequences, scored each site as either
0 (representing no variant) or 1 (representing a variant site),
and used model-averaged clustering of discrete linear sequen-
ces (Zhang and Townsend 2009). This method calculates all
likely models of linear clustering by partitioning the entire
coding sequence into all possible sets of three regions, and
the multiple-Bernoulli likelihood was estimated for each clus-
tering model. Models were penalized for overparameteriza-
tion via the AIC, BIC, or AIC (corrected; AICc). We then
calculated the weighted average probability of a variant
appearing at each site across all models (as in MACML;
Zhang and Townsend 2009), using the weights
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wi ¼
e�

1
2 ai�a

^
� �

Xm

j¼1

e�
1
2 aj�a

^
� � ; (1)

where ai is the AIC of model i, �a is the smallest AIC in all
models, and m is the number of all candidate models.

To perform the model averaging, we defined the proba-
bility of a variant at each site i as the weighted average prob-
ability across all models for each site i,

pðiÞ ¼
Xm

j¼1

wj � pðijjÞ; (2)

where p(ijj) is p(i) given model j. To calculate the central 95%
of weighted models for the probabilities at each site, we first
sorted all the models by p(i), then summed the weight of each
model from low to high. When the cumulative weight
reached 0.025 and 0.975, the p(i) associated with that model
was the lower and upper 95% bound, respectively. This clus-
tering can be performed on all four categories of variants: SP,
SD, RP, and RD. Model averaging of the probability of each
site being a variant is optional fig. 1, insets A–D.

Calculating the Selection Intensity on Each Site
The estimated maximum likelihood probabilities of polymor-
phism and divergence data computed by the MACML algo-
rithm above were used to parameterize the PRF model
(Sawyer and Hartl 1992). Theoretical expectations for poly-
morphism and divergence in the PRF model are calculated as
follows:

EðSDÞ ¼ 2ls � tþ 1

m
þ 1

n

� �
; (3)

EðSPÞ ¼ 2ls � ½LðmÞ þ LðnÞ�; (4)

EðRDÞ ¼ 2lr �
2c

1� e�2c

� �
� tþ G mð Þ þ G nð Þ½ �; (5)

and

EðRPÞ ¼ 2lr �
2c

1� e�2c

� �
� F mð Þ þ F nð Þ½ �; (6)

where ls is the silent mutation rate per Ne generations, t is the
species divergence, m and n are the corresponding sample
sizes of sequences in the gene alignment from each species
(the 1/m and 1/n terms account for actually polymorphic sites
that may be observed as monomorphic in each sample), lr is
the replacement mutation rate per Ne generations. In these
equations, the scaled selection coefficient is c¼ 2Nes, where Ne

is the effective population size and s is the canonical popula-
tion genetic selection coefficient. One explicit assumption of
this method is that Ne is the same between two species being
compared. Under PRF theory, a scaled selection coefficient
c> 0 corresponds to patterns of substitution driven by pos-
itive selection, c< 0 corresponds to negatively selected

substitutions, and c¼ 0 corresponds to a pattern of substitu-
tion driven by neutral evolution (Sawyer and Hartl 1992). Ohta
(2002) suggested that weak selection or near neutrality corre-
sponds to 0.5< jNesj< 3 in Drosophila (Ohta 1992, 2002), and
that estimates of c above this range should be strong enough
so that the change in frequency of a mutation mainly depends
on selection (Sawyer et al. 2007). Using simulation data, we
defined nearly neutral as�1< c< 4, strong positive selection
as c> 4 and strong negative selection as c <�1.

Specifically, for each demographic and recombination sce-
nario, we plotted the percentage of statistically significant
sites over all the simulated genes (the FPR) as a function of
the c threshold, testing all threshold values from �10 to 10
with an interval of 0.1. As we expected, the FPR for positive
selection falls sharply with increasing c thresholds, whereas
the FPR for negative selection increases rapidly with increas-
ing thresholds for c (supplementary fig. S3, Supplementary
Material online). On the basis of this analysis, we found that c
thresholds associated with low FPRs (<0.1) were close to our
specified thresholds of neutrality at –1 and 4. In addition, we
defined levels of positive selection based on estimates of c as
follows: weak (c> 4; lower bound< 0), moderate (c> 4;
0< lower bound< 4), and strong (c> 4; lower bound> 4)
evidence for positive selection in specific genic regions. The
lower bound in these inequalities refers to the lower 95%
model uncertainty interval for the estimate of c.

The functions L, F, and G appearing in equations (4–6) all
account for sites that are polymorphic in the population that
may be observed as monomorphic within finite sample sizes
m and n, and are defined in Sawyer and Hartl (1992) as

LðnÞ ¼
Xn�1

i¼1

1

i
; (7)

FðnÞ ¼
ð1

0

1� xn � ð1� xÞn

1� x
:

1� e�2cx

2cx
dx; and (8)

GðnÞ ¼
ð1

0

ð1� xÞn�1 1� e�2cx

2cx
dx: (9)

To parameterize t in equations (3) and (5), divergence
estimates can be derived from other data, or divergence
between the two species can be inferred from presumably
neutral silent substitutions (Sawyer and Hartl 1992). In the
latter case, the observed numbers of SPs within species and
SD between species are tallied from all aligned DNA sequen-
ces. A nominal divergence t can then be estimated at a gene
level by setting the ratio of the expectations in equations (4)
and (3) equal to the ratio of observations,

LðmÞ þ LðnÞ
tþ 1

mþ 1
n

¼ Nsp

Nsd
; (10)

where Nsp is the number of SP and Nsd is the number of SD
across a given coding gene, while and L(m) and L(n) are de-
fined by equation (7).

We modified the PRF method (Sawyer and Hartl 1992),
which typically calculates a single c value for all divergent sites
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along a given sequence. In our modified method, we param-
eterized the PRF model with the average maximum likelihood
probability of observing RP and RD at each site i. We then
estimated ci by setting the ratio of the expectations in
equations (6) and (5) equal to the ratio of estimated proba-
bilities of RP and RD at site i,

FðmÞ þ FðnÞ
tþ GðmÞ þ GðnÞ ¼

prpðiÞ
prdðiÞ

: (11)

F(m), F(n), G(m), and G(n) are defined by equations (8) and
(9). A computationally tractable simplification of equation
(11) arises when m¼ 1 (i.e., we are using just one divergent
sequence). In that case,

fðciÞ ¼ tþ
ð1

0

1� e�2cix

2cix

� ½1þ ð1� xÞn�1 � prdðiÞ
prpðiÞ

1

1� x

� 1� xn � ð1� xÞnð Þ�dx;

(12)

and f ’ðciÞ ¼
ð1

0

½1þ ð1� xÞn�1 � prdðiÞ
prpðiÞ

1

1� x

� 1� xn � ð1� xÞnð Þ�

� e�2cix 1þ 2cix� e2cixð Þ
2ci

2x
dx:

(13)

We estimated ci for a single model by implementing the
Newton–Raphson method (Lange 1999) using equation (12)
and its derivative equation (13).

In equations (10–12), parameter t is assumed to be
constant across sites within a gene. Alternatively, to in-
corporate potential heterogeneity of mutation rate across
sites when estimating ci, it is possible to subscript t by site
i in equation (10), in which case, the site-specific diver-
gence time ti can stand as a proxy for variation in silent
mutation rate across sites:

tðiÞ ¼ psdðiÞ
pspðiÞ

½LðmÞ þ LðnÞ� � 1

m
� 1

n
: (14)

Estimating the Model-Averaged Selection Intensity
and Its Model Uncertainty Intervals for Each Site
Our estimate of the selection intensity at site i is the model-
averaged value across all or a stochastic sample of joint mod-
els, and the model uncertainty interval is calculated as the
central 95% of joint model probability weight. The weight of
each joint model is a product of the model weights (eq. 1) for
RP and RD models or alternatively a product of the model
weights for RP, RD, SP, and SD models (if silent site clustering
is implemented to account for mutation rate heterogeneity
within genes). Model-averaged c is then calculated by weigh-
ing every c associated with each joint model. To estimate
95% model uncertainty intervals for selection intensity, we

developed and implemented two algorithms that can be se-
lected based on user needs: (1) an exhaustive option that
should be selected for analysis of shorter genes where inten-
sive computation is not prohibitive, or (2) a stochastic option
that should be selected for analysis of longer genes in a rela-
tively short time and with a high level of accuracy and pre-
cision over sufficient iterations.

For the exhaustive algorithm, weights for all possible joint
models are calculated as above. The model-based selection
intensity at site i for each joint model is calculated using
equations (12) and (13). These model-based selection inten-
sities are then averaged by their joint weights to obtain the
model-averaged selection intensity ci. To calculate the 95%
model uncertainty interval of selection intensity at each site,
all joint models are sorted by their selection intensity at site i,
then the weight of each joint model is summed from low to
high. When the cumulative weight reaches 0.025 and 0.975,
the selection intensity associated with those joint models
represents the lower and upper 95% bound, respectively.

In contrast, the stochastic algorithm samples a subset of
the possible joint models, requiring markedly less computa-
tion in comparison with the exhaustive algorithm. The sum of
all weighted joint models equals 1. To sample stochastically,
random variables between 0 and 1 are generated to select a
large number of joint models proportionately to their joint
model weight (30,000 by default). Once the subset of joint
models is selected, model-averaged selection intensity is cal-
culated as the average value of model-based selection inten-
sities sampled at site i, and the 95% model uncertainty
interval at each site is bounded by the 0.025 and 0.975 quan-
tiles of the sampled ranked model-based selection intensities.

Implementation of MASS-PRF
MASS-PRF was written in the standard Cþþ programming
language. The software package is accompanied by a manual,
example data, source codes, and compiled executable com-
mands for Windows/Linux/Mac. Source codes are released to
GPLv3, and can be downloaded from https://github.com/
Townsend-Lab-Yale/MASSPRF (last accessed August 2, 2017).

Simulations of Clustering of Variant Sites with
Polymorphism and Divergence Data
To demonstrate the robustness of MASS-PRF, we simulated
SP, SD, RP, and RD sites distributed within clusters ranging
from 100 bp to 1,200 bp in length, with cluster size increasing
by 100 bp up to a maximum cluster size of 1,200 bp (the
entire length of the gene).

Our simulations were conducted as follows:

(1) Each simulated sequence represents protein-coding se-
quence with a total length of 1,200 bp (corresponding
to a protein 400 amino acids in length).

(2) The numbers of SP, RP, SD, and RD were specified as
15, 10, 25, and 20 respectively in a 1,200 bp long nucle-
otide coding sequence. These numbers for SP, RP, SD,
and RD are within the ranges of organismal polymor-
phism and divergence data.
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(3) SP, RP, SD, and RD sites were randomly and uniformly
distributed within the cluster length.

We used the expected probabilities derived from our sim-
ulation parameters for SP, SD, RP, and RD, using count data
for each variant type and information about the width of the
region in which these sites occur (i.e., either the size of a
cluster ranging from 100 bp to 1,200 bp assessed in incre-
ments of 100 bp. Sequences were generated by custom Perl
scripts and we performed M¼ 100 replicates for each
simulation scenario. The maximum likelihood probability of
a variant site for both the clustered and non-clustered model
was compared with the expected (simulated) probabilities
using the Kullback–Liebler distance to determine the
accuracy and precision of MASS-PRF in detecting clusters
of nucleotide substitutions.

Accuracy and Precision of MASS-PRF in Detecting
Clusters of Substitutions Using Simulated Data
To assess the performance of MASS-PRF and an unclus-
tered approach in detecting clusters of substitutions, we
quantified the divergence between the multiple Bernoulli
probability distribution p corresponding to the expected
probabilities across sites and the multiple Bernoulli proba-
bility distribution p* corresponding to the estimated prob-
abilities across sites by calculating the Kullback–Leibler (KL)
divergence (Kullback and Leibler 1951). In the unclustered
approach, the probability at each site p was constrained to
be identical across sites. The KL divergence measures the
difference between two probability distributions p and p*,
and is defined as

Dðpjjp�Þ ¼ p� log2

p

p�
þ ð1� pÞ � log2

ð1� pÞ
ð1� p�Þ : (15)

With M replicates for each variable combination, and N
sites for each sequence, the average KL divergence over
M�N was calculated as

�D ¼ 1

M� N

XM�N

j¼1

Dðpjjp�Þ: (16)

Equation (16) measures the average closeness of our
estimated probabilities to expected probabilities, quantifying
the accuracy of the estimation. The precision r was calculated
as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M� N

XM�N

j¼1

Dðpjjp�Þ � �D½ �2
vuut : (17)

Because KL divergence measures the difference between
the two distributions, an average KL divergence �D and a r
approaching 0 indicate a good match between the esti-
mated and expected distributions. Thus, accuracy and pre-
cision based on KL divergence are interpreted to be high
when �D and r are low. The KL divergence was performed
on all four categories of variants: SP, SD, RP, and RD (fig. 2).

Assessment of Robustness of MASS-PRF to
Demographic and Recombination History Using
Coalescent Simulations
To evaluate the impacts of demography and recombination
on the estimation of selection intensity using MASS-PRF, we
simulated six sets of neutrally evolved genes under three de-
mographic events: bottleneck, constant and expansion sce-
narios with and without recombination. Firstly, we used
Hudson‘s ms (Hudson 2002) to simulate 20 coalescent
graphs, each containing 101 samples, for six conditions incor-
porating three demographic events and recombination.
Within each iteration of generating each coalescent graph,
we specified a diploid population size of N0¼ 104, a mutation
rate of 10�8, and a recombination rate of q¼ 0.36 (as sug-
gested in Hudson‘s ms application) with a gene length of
900 bp. Within each iteration, the 101 samples include one
divergent sequence and 100 polymorphic sequences, which
diverged 6 Ma (by eliminating migration from that time
forward).

We specified three demographic histories with and with-
out recombination: an instantaneous 5-fold bottleneck at
100 ka (thousand years ago), a constant population, and a
10-fold exponential growth beginning 100 ka. After generat-
ing 20 trees under each of the six scenarios, we used Fletcher
and Yang‘s INDELible (Fletcher and Yang 2009) to evolve
sequences consistent with the coalescent trees under a neu-
tral codon substitution model (the two-ratio model M1 with
x0¼ 0, x1¼ 1, and p0¼ 0.5) as demonstrated by Yang and
Nielsen (2002). In the recombination scenarios, the multiple
trees for each coalescent simulation that were output by ms
were independently evolved in NDELible and then
reconcatenated to produce full 900 bp sequences.

MK tests were then applied to the simulated data to test
the null hypothesis that genes were neutrally evolving. Finally,
we estimated selection intensity for the six sets of simulated
sequences using MASS-PRF with two divergence time strat-
egies: (1) the site-specific divergence time calculated using
silent sites, and (2) a fixed 6 Ma divergence time correspond-
ing to the human–chimpanzee species divergence time (of
the human and chimpanzee lineages) specified in our ms
coalescent simulations. FPRs of selection intensities inferred
by MASS-PRF on the simulated data were calculated.

Application of MASS-PRF to Empirical Data
We evaluated selection intensities by MASS-PRF in seven
genes: SLC6A5, GRIN2C, RNASEL, IL18RAP, TGM4, WBP2NL,
and SPAG5, which were detected to be under positive se-
lection by Bustamante et al. (2005), Kosiol et al. (2008), or
Clark et al. (2005). We extracted phased polymorphisms in
these seven genes from the 1000 Genomes whole exome
sequence data (supplementary table S2, Supplementary
Material online) based on the genomic coordinates given
in the National Center for Biotechnology Information
(NCBI) database (Build GRch37). We then converted the
genomic coordinates of polymorphisms in the above genes
to their corresponding transcript coordinates using the
Variant Annotation Integrator software on the UCSC
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Genome Browser website. We downloaded the transcripts
for each gene (which served as a reference) from the UCSC
Genome Browser and inserted the phased polymorphic
alleles into the reference transcript using their transcript
coordinates, creating two copies of the protein-coding
gene. We performed this step for each of the 297 individuals
in the 1000 Genomes whole exome data set.

Once we reconstructed the diploid sequences for each in-
dividual based on their polymorphisms and the reference tran-
script, we applied MASS-PRF to these data and the aligned
orthologous gene transcripts from P. troglodytes (common
chimpanzee). For this analysis, we specified the default option
of using clustering of silent sites to calculate the time of diver-
gence (t) between the ancestors of humans and chimpanzees.
We specified the BIC criterion for calculating weights of cluster
models and weights of joint models, using the stochastic al-
gorithm (sampling 30,000 models) to calculate the model-
averaged selection intensity and its 95% model uncertainty
intervals. For selection intensities indicative of strong positive
or negative selection, we examined our sequence data to con-
firm the presence of clusters of divergent replacement sites in
our human samples compared with chimpanzee sequence.

To distinguish nucleotide substitutions that occurred in
the human lineage from those that occurred in the chimpan-
zee lineage, we used Gorilla gorilla as an outgroup (supple-
mentary table S5, Supplementary Material online). The
chimpanzee and gorilla sequences were downloaded from
Ensembl. In addition to the above genes previously inferred
to be under positive selection in Bustamante et al. (2005),
Clark and Swanson (2005), Kosiol et al. (2008), we also ana-
lyzed 51 genes that were not previously identified to be under
selection based on polymorphic and divergent data (Bakewell
et al. 2007; Gaya-Vidal and Alba 2014) using MASS-PRF.

To detect departures from neutral evolution in real data,
we applied the MK tests to the above 58 genes (figs. 3, 4 and
supplementary fig. S2, Supplementary Material online). We
also compared the counts of replacement and silent sites
within and between species (human and chimp anzee) for
all of our genes using the MK test (McDonald and Kreitman
1991). In the MK test, under neutrality, the within- to
between-species ratio for silent variant counts is expected
to be the same as the within- to between-species ratio of
replacement variant counts. For this between-species com-
parison, we used sequences from P. troglodytes downloaded
from NCBI. Significance for the MK statistic was determined
using Fisher‘s Exact Test. We calculated Q values to control for
possible type I errors when conducting multiple tests for MK
tests. The Q values were computed by inputting the P values
from the MK tests into the MATLAB Bioinformatics Toolbox
command mafdr (www.mathworks.com/help/bioinfo/ref/
mafdr.html), which implements a false discovery rate estima-
tion following (Storey 2002).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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