• Teoria y Estructura Atómica

  • Materia
  • ¿Sabía usted que?

    Did you know that some ancient Greeks believed that all matter was made up of four substances: fire, air, water, and earth? They believed that rabbits were soft because they had more water than earth. Although this idea seems silly now, it contains a fundamental principle of atomic theory: that matter is made up of a small number of fundamental elements.

    • NGSS
    • HS-C5.1, HS-PS1.A3
    Resumen

    Tracking the development of our understanding of the atomic structure of matter, this module begins with the contributions of ancient Greeks, who proposed that matter is made up of small particles. The module then describes how Lavoisier's Law of Conservation of Mass and Proust's Law of Definite Proportions contributed to Dalton's modern atomic theory.

  • Teoría Atómica I
  • ¿Sabía usted que?

    ¿Sabia usted que los científicos antes pensaban que átomos se parecían a bolas de billar o pan de pasas, aunque ninguno de estos dos resulto ser verdadero? Los átomos son tan pequeños que 20 millones de átomos de hidrogeno puede caber en este guión -. A pesar de este tamaño tan pequeño, los científicos han llegado a tener un entendimiento exacto de la estructura atómica.

    Resumen

    La teoría atómica moderna ha evolucionado dramáticamente desde el punto de vista del siglo XIX que miraban al átomo como una esfera pequeña y solida parecida a una bola de billar. Este modulo explora esta historia: del descubrimiento de electrones y protones a finales del siglo XIX hasta el modelo planetario del átomo a principios del siglo XX. Este módulo explica la función y partículas subatómicas y así mismo su tamaño y peso relativo. Los conceptos del numero y masa atómica son introducidos.

    • NGSS
    • HS-C4.4, HS-C6.2, HS-PS1.A1, HS-PS1.A3
    Conceptos Clave
    • Los átomos no son esferas densas pero consisten en pequeñas partículas incluyendo un electrón cargado negativamente.
    • La investigación acerca de corrientes eléctricas pasantes pasando por tubos al vacío por Faraday, Geisser, Crookes y otros que formaron las bases para el descubrimiento de la primera partícula subatómica.
    • Las observaciones de J.J. Thomson de rayos catódicos proveen la base para el descubrimiento de un electrón.
    • Rutherford, Geiger y Marsden llevaron a cabo una serie de experimentos que indicaron que los átomos tenían centros pequeños, densos y cargados positivamente – después se les llamó núcleo.
    • El experimento de Millikan determinó la carga fundamental en el electrón como 1.60 x 10-19 coulombs.
  • Teoría Atómica II
  • ¿Sabía usted que?

    Did you know that energy is not released in a continuous flow, but rather is released in “packets”? This discovery, known as quantum theory, changed the way we understand the basic properties of the atom. Many other advances in atomic theory were made in the 20th century, including the discovery of the neutron, which made the atom bomb possible.

    Resumen

    The 20th century brought a major shift in our understanding of the atom, from the planetary model that Ernest Rutherford proposed to Niels Bohr’s application of quantum theory and waves to the behavior of electrons. With a focus on Bohr’s work, the developments explored in this module were based on the advancements of many scientists over time and laid the groundwork for future scientists to build upon further. The module also describes James Chadwick’s discovery of the neutron. Among other topics are anions, cations, and isotopes.

    • NGSS
    • HS-C4.4, HS-C6.2, HS-PS1.A1, HS-PS1.A3
    Conceptos Clave
    • Basándose en evidencia experimental y teórica, Niels Bohr cambió el paradigma de teoría atómica moderna de uno que se basaba en partículas físicas y la física clásica, a una que se basa en principios cuánticos.
    • Bajo el modelo de Bohr del átomo, los electrones no pueden girar libremente alrededor del átomo, pero si son enlazados a ciertos orbitales atómicos que constriñen y también definen el comportamiento electrónico del átomo.
    • Los átomos pueden ganar o perder electrones para convertirse en iones cargados.
    • James Chadwick completó una de las primeras imágenes del átomo con su descubrimiento del neutrón, una partícula neutral que afecta la masa del átomo y las diferentes propiedades físicas de isotopos atómicos.
  • Atomic Theory III
  • ¿Sabía usted que?

    Did you know that atoms could not be described accurately until quantum theory as developed? Quantum theory offered a fresh way of thinking about the universe at the atomic level. After tremendous advances in quantum mechanics in the last century, the position of electrons and other infinitesimal particles can be predicted with confidence.

    Resumen

    The 20th century was a period rich in advancing our knowledge of quantum mechanics, shaping modern physics. Tracing developments during this time, this module covers ideas and refinements that built on Bohr’s groundbreaking work in quantum theory. Contributions by many scientists highlight how theoretical insights and experimental results revolutionized our understanding of the atom. Concepts include the Schrödinger equation, Born’s three-dimensional probability maps, the Heisenberg uncertainty principle, and electron spin.

    • NGSS
    • HS-C1.4, HS-C4.4, HS-PS1.A2, HS-PS2.B3
    Conceptos Clave
    • Electrons, like light, have been shown to be wave-particles, exhibiting the behavior of both waves and particles.
    • The Schrödinger equation describes how the wave function of a wave-particle changes with time in a similar fashion to the way Newton’s second law describes the motion of a classic particle. Using quantum numbers, one can write the wave function, and find a solution to the equation that helps to define the most likely position of an electron within an atom.
    • Max Born’s interpretation of the Schrödinger equation allows for the construction of three-dimensional probability maps of where electrons may be found around an atom. These ‘maps’ have come to be known as the s, p, d, and f orbitals.
    • The Heisenberg Uncertainty Principle establishes that an electron’s position and momentum cannot be precisely known together, instead we can only calculate statistical likelihood of an electron’s location.
    • The discovery of electron spin defines a fourth quantum number independent of the electron orbital but unique to an electron. The Pauli exclusion principle states that no two electrons with the same spin can occupy the same orbital.
  • Atomic Theory IV
  • ¿Sabía usted que?

    Did you know that electrons are so tiny that when you shine light on them, the light itself changes the electron’s path? Because of this, we can’t know exactly where an electron is within an atom. Rather, it necessary to describe the position of an electron in terms of probability. Thus, scientists use a mathematical equation to describe how electrons are most likely distributed around the atom's nucleus.

    Resumen

    Our Atomic Theory series continues, exploring the quantum model of the atom in greater detail. This module takes a closer look at the Schrödinger equation that defines the energies and probable positions of electrons within atoms. Using the hydrogen atom as an example, the module explains how orbitals can be described by type of wave function. Evidence for orbitals and the quantum model is provided by the absorption and emission spectra of hydrogen. Other concepts include multi-electron atoms, the Aufbau Principle, and Hund’s Rule.

    • NGSS
    • HS-C1.4, HS-C4.4, HS-PS1.A2, HS-PS2.B3
    Conceptos Clave
    • The wave-particle nature of electrons means that their position and momentum cannot be described in simple physical terms but must be described by wave functions.
    • The Schrödinger equation describes how the wave function of a wave-particle changes with time in a similar fashion to the way Newton’s second law describes the motion of a classical particle. The equation allows the calculation of each of the three quantum numbers related to individual atomic orbitals (principal, azimuthal, and magnetic).
    • The Heisenberg uncertainty principle establishes that an electron’s position and momentum cannot be precisely known together; instead we can only calculate statistical likelihood of an electron’s location.
    • The discovery of electron spin defines a fourth quantum number independent of the electron orbital but unique to an electron. The Pauli exclusion principle states that no two electrons with the same spin can occupy the same orbital.
    • Quantum numbers, when taken as a set of four (principal, azimuthal, magnetic and spin) describe acceptable solutions to the Schrödinger equation, and as such, describe the most probable positions of electrons within atoms.
    • Orbitals can be thought of as the three dimensional areas of space, defined by the quantum numbers, that describe the most probable position and energy of an electron within an atom.
  • La Tabla Periódica de Elementos
  • ¿Sabía usted que?

    Did you know that although electrons are minuscule compared to other parts of an atom, the way they are arranged around the nucleus is the biggest factor in determining the chemical properties of an element? The periodic chart is ordered by atomic number, but drastic shifts in chemical properties can occur from one element to the next. These shifts are explained by how the elements are displayed on the periodic table.

    • NGSS
    • HS-C1.1, HS-PS1.A2
    Resumen

    The modern periodic table is based on Dmitri Mendeleev’s 1896 observations that chemical elements can be grouped according to chemical properties they exhibit. This module explains the arrangement of elements in the period table. It defines periods and groups and describes how various electron configurations affect the properties of the atom.

  • El Mol y la Masa Atómica
  • ¿Sabía usted que?

    Did you know that just as one dozen equals 12 of something, one mole equals 602,000,000,000,000,000,000,000 of something? This huge number, written as 6.02 x 1023, is used by scientists to describe the amount of extraordinarily small things like atoms and molecules. The mole is a standard unit of measure in the metric system, and it is useful for converting the number of particles in a substance into its mass, and vice versa.

    Resumen

    The mole is an important concept for talking about a very large number of things — 6.02 x 1023 of them to be exact. This module shows how the mole, known as Avogadro’s number, is key to calculating quantities of atoms and molecules. It describes 19th-century developments that led to the concept of the mole, Topics include atomic weight, molecular weight, and molar mass. Sample equations illustrate how molar mass and Avogadro’s number act as conversion factors to determine the amount of a substance and its mass.

    Conceptos Clave
    • El mol es un término para un gran número, 6.02 x 1023, conocido como el número de Avogadro.
    • El número de Avogadro es un número determinado (por medio de experimentación) de átomos de carbono-12 en 12 gramos de carbono-12.
    • El valor numérico de la masa de un mol (masa molar) de los átomos de un elemento es igual al valor de la masa de un átomo individual de un elemento (masa atómica); sin embargo, las unidades de estos números de masas son diferentes,
    • La masa molar de un elemento puede ser utilizada para calcular el número de átomos en una muestra con una masa conocida, y para calcular la masa de una muestra con un número conocido de átomos.

    Ir a módulo

  • Propiedades y Estados Físicos

  • La Materia: Estados de la Materia
  • ¿Sabía usted que?

    Did you know that solids, liquids, and gases are not the only states of matter? Among others are plasmas, which have such high energy that molecules are ripped apart. And Bose-Einstein Condensates, seen for the first time in 1995, are a weird state of matter that can actually trap light.

    • NGSS
    • HS-C5.2, HS-PS1.A3, HS-PS1.A4, HS-PS2.B3
    Resumen

    There are many states of matter beyond solids, liquids, and gases, including plasmas, condensates, superfluids, supersolids, and strange matter. This module introduces Kinetic Molecular Theory, which explains how the energy of atoms and molecules results in different states of matter. The module also explains the process of phase transitions in matter.

  • Propiedades de Gases
  • ¿Sabía usted que?

    Did you know that if you took a helium balloon to the top of Mount Everest, it would get bigger and might even pop? Conversely, if you took a helium balloon deep enough under the ocean, it would shrivel up. This is because of the basic properties of gases, which in addition to explaining the behavior of balloons are key to critical functions like breathing and lifesaving technology like automobile airbags.

    Resumen

    This module describes the properties of gases and explores how these properties relate to a common set of behaviors called the gas laws. With a focus on Boyle’s Law, Charles’s Law, and Avogadro’s Law, an overview of 400 years of research shows the development of our understanding of gas behavior. The module presents the ideal gas equation and explains when this equation can—and cannot—be used to predict the behavior of real gases.

    Conceptos Clave
    • No como los sólidos y los líquidos, las moléculas en un gas están bien separados y casi no interactúan entre ellos, la cual es la razón de porque gases que consisten de diferentes moléculas comparten comportamientos similares.
    • Las leyes de los gases describen la relación entre la temperatura, la presión, el volumen y la cantidad de gas. Estas leyes se identifican en experimentos llevados a cabo por varios científicos en el transcurso de cuatro siglos.
    • Debido a que gases comparten comportamientos comunes, el comportamiento de un gas real bajo una presión especifica (P), temperatura absoluta, (T), volumen (V), y cantidad (n, en moles) puede a menudo ser predicho por la ecuación de gas ideal.
    • El comportamiento del gas real se desvía del gas ideal en temperaturas bajas y en presiones altas.
  • Properties of Liquids
  • ¿Sabía usted que?

    Did you know that various liquids behave differently because of how the tiny molecules of which they are composed interact with each other? This is why gasoline flows more quickly than syrup and why certain insects can walk across the surface of water without falling in. In fact, pitch, a liquid that comes from plants and petroleum, flows so slowly that when placed in a funnel, an entire decade can pass between each drop!

    Resumen

    When it comes to different liquids, some mix well while others don’t; some pour quickly while others flow slowly. This module provides a foundation for considering states of matter in all their complexity. It explains the basic properties of liquids, and explores how intermolecular forces determine their behavior. The concepts of cohesion, adhesion, and viscosity are defined. The module also examines how temperature and molecule size and type affect the properties of liquids.

    • NGSS
    • HS-C6.2, HS-PS1.A3, HS-PS1.A4
    Conceptos Clave
    • Liquids share some properties with solids – both are considered condensed matter and are relatively incompressible – and some with gases, such as their ability to flow and take the shape of their container.
    • A number of properties of liquids, such as cohesion and adhesion, are influenced by the intermolecular forces within the liquid itself.
    • Viscosity is influenced by both the intermolecular forces and molecular size of a compound.
    • Most liquids we encounter in everyday life are in fact solutions, mixtures of a solid, liquid or gas solute within a liquid solvent.
  • Propiedades de Solidos
  • ¿Sabía usted que?

    Did you know that the melting point of solids can be as low as -38°C (or -36°F) for mercury and as high as 4,489°C (or 8,112°F) for graphite? This is because differences in the composition, bonding, and structure of various solids determine how they behave. The way that different solids are formed also determines which ones conduct heat and electricity and which dissolve easily when stirred into a beverage.

    Resumen

    Solids are formed when the forces holding atoms or molecules together are stronger than the energy moving them apart. This module shows how the structure and composition of various solids determine their properties, including conductivity, solubility, density, and melting point. The module distinguishes the two main categories of solids: crystalline and amorphous. It then describes the four types of crystalline solids: molecular, network, ionic, and metallic. A look at different solids makes clear how atomic and molecular structure drives function.

    • NGSS
    • HS-C6.2, HS-PS1.A3
    Conceptos Clave
    • Un sólido es una colección de átomos o moléculas que se mantienen juntas para que bajo condiciones constantes mantengan una forma definida y un tamaño definido.
    • Existen dos tipos principales de categorías de sólidos: cristalinos y amorfos. Los sólidos cristalinos son bien ordenados en un nivel atómico y sólidos amorfos son desordenados.
    • Existen cuatro diferentes tipos de sólidos cristalinos, sólidos moleculares, sólidos de red, sólidos iónicos y sólidos metálicos. La estructura y la composición de un sólido a nivel atómico determina muchas de sus propiedades macroscópica, incluyendo, por ejemplo, la conductividad de calor, la conductividad eléctrica, la densidad y la solubilidad.
  • Difusión
  • ¿Sabía usted que?

    Did you know that the process of diffusion is responsible for the way smells travel from the kitchen throughout the house? In diffusion, particles move randomly, beginning in an area of higher concentration and ending in an area of lower concentration. This principle is fundamental throughout science and is very important to how the human body and other living things function.

    Resumen

    The process of diffusion is critical to life, as it is necessary when our lungs exchange gas during breathing and when our cells take in nutrients. This module explains diffusion and describes factors that influence the process. The module looks at historical developments in our understanding of diffusion, from observations of “dancing” particles in the first century BCE to the discovery of Brownian motion to more recent experiments. Topics include concentration gradients, the diffusion coefficient, and advection.

    • NGSS
    • HS-C5.4, HS-PS3.A3, HS-PS3.B5
    Conceptos Clave
      La difusión es el proceso por el cual moléculas se mueven a través de una sustancia, aparentemente bajo un gradiente de concentración, debido al movimiento molecular aleatorio y la colisión entre partículas.
    • Muchos factores influyeron la velocidad en la cual la difusión se llevo a cabo, incluyendo el medio en el cual la sustancia de difunde, el tamaño de las moléculas en difusión, la temperatura de los materiales, la distancia que viajaron las moléculas entre colisiones.
    • El coeficiente de difusión o difusividad provee una medida relativa de condiciones especificas de la velocidad en la cual dos sustancias se difunden una en otra.
  • Teoría cinética-molecular
  • ¿Sabía usted que?

    Did you know that during the 18th century scientists theorized that particles were engulfed in a heat substance called “caloric” which imparted temperature to matter and caused gas molecules to be repelled from one another? This idea was rejected by the scientist Rudolph Clausius who proposed that heat is a form of energy that affects the temperature of matter by changing the motion of molecules in matter. This kinetic theory of heat enabled Clausius to study and predict the flow of heat—a field we now call thermodynamics and key to the development of kinetic-molecular theory.

    Resumen

    Over four hundred years, scientists including Rudolf Clausius and James Clerk Maxwell developed the kinetic-molecular theory (KMT) of gases, which describes how molecule properties relate to the macroscopic behaviors of an ideal gas—a theoretical gas that always obeys the ideal gas equation. KMT provides assumptions about molecule behavior that can be used both as the basis for other theories about molecules and to solve real-world problems.

    Conceptos Clave
    • La teoría molecular-cinética que dice que las moléculas tienen una energía de movimiento (energía cinética) que depende en la temperatura.
    • Rudolf Clausius desarrolló la teoría cinética de calor, la cual relaciona la energía en una forma de calor a la energía cinética de moléculas.
    • Durante mas de cuatrocientos años, científicos han desarrollado la teoría molecular de gases, los cuales describen como propiedades de moléculas se relacionan a comportamientos macroscópicos de un gas ideal – un gas teórico que siempre sigue la ecuación del gas ideal.
    • La teoría cinética-molecular de gases asume que las moléculas de gas ideal (1) están en constante movimiento; (2) tienen un volumen bien pequeño (3) tienen fuerzas intermoleculares débiles; (4) pasan por colisiones perfectamente elásticas; y (5) tienen una energía cinética promedio proporcional la temperatura del gas ideal absoluta.
  • Solutions, Solubility, and Colligative Properties
  • ¿Sabía usted que?

    Did you know that the more concentrated a solution is, the lower its freezing point and the higher its boiling point? This is why antifreeze keeps your car engine from freezing in frigid weather or overheating on very hot days. Forces at work on a molecular level determine what happens when a solution is formed. A look at the chemistry of solutions reveals why some substances dissolve more easily than others and why some compounds don’t dissolve at all.

    Resumen

    Aqueous solutions are found throughout our world, and their chemistry depends in part on how much of a dissolved substance is in them. This module explores how substances dissolve, why some substances don’t dissolve, and how we express the concentration of a solution. The module describes the forces that hold particles together and interactions that keep dissolved particles apart. It also examines how concentration affects freezing point, boiling point, and vapor pressure.

    Conceptos Clave
    • A solution is formed when solute particles are randomly distributed and dissolved in a solvent.
    • Molarity is a measure of the solute concentration in a solution, and remains consistent when a fraction of the solution is poured off.
    • In polar solutions, the charges on both the solute and solvent particles keep the solute dissolved, as the polar solvent molecules surround the solute particles and keep them apart.
    • The relative solubility of a salt or polar compound in water is a balance of two forces: the attraction between atoms of the salt molecule, and the attraction between the ions and the water molecules.
    • Solutions of non-polar solutes in non-polar solvent are driven by London dispersion forces, another type of attraction between molecules.
    • Colligative properties of solutions—freezing point depression, boiling point elevation, and vapor pressure lowering—are related to the concentration of solute molecules but independent of the specific solute type.
  • Water
  • ¿Sabía usted que?

    Did you know that Galileo and his chief rival, Ludovico delle Colombe, had a famous debate on why ice floats on water? Delle Colombe claimed it was the broad and flat shape of ice, whereas Galileo claimed it was the lower density of ice that allowed it to float.

    Resumen

    Water is a truly unusual and important substance. The unique chemical properties of water that give rise to surface tension, capillary action, and the low density of ice play vital roles in life as we know it. Floating ice protects aquatic organisms and keeps them from being frozen in the winter. Capillary action keeps plants alive. Surface tension allows lily pads to stay on the surface of a lake. In fact, water’s chemistry is so complex and important that scientists today are still striving to understand all the feats this simple substance can perform.

    Conceptos Clave
    • Water has a number of unique properties that make it important in both the chemical and biological worlds.
    • The polarity of water molecules allows liquid water to act as a "universal solvent," able to dissolve many ionic and polar covalent compounds.
    • The polarity of water molecules also results in strong hydrogen bonds that give rise to phenomena such as surface tension, adhesion, and cohesion.

    Ir a módulo

  • Relaciones Químicas

  • Enlaces Químicos
  • ¿Sabía usted que?

    Did you know that the 118 elements on the periodic table combine to make millions and millions of chemical compounds? This is because chemical bonds between atoms result in new substances that are very different from the elements they are made of. For example, chlorine can be used as a chemical weapon and yet it combines with sodium, a highly reactive element, to make common table salt.

    Resumen

    The millions of different chemical compounds that make up everything on Earth are composed of 118 elements that bond together in different ways. This module explores two common types of chemical bonds: covalent and ionic. The module presents chemical bonding on a sliding scale from pure covalent to pure ionic, depending on differences in the electronegativity of the bonding atoms. Highlights from three centuries of scientific inquiry into chemical bonding include Isaac Newton’s ‘forces’, Gilbert Lewis’s dot structures, and Linus Pauling’s application of the principles of quantum mechanics.

    • NGSS
    • HS-C4.3, HS-C6.2, HS-PS1.A3, HS-PS1.B1
    Conceptos Clave
    • Cuando una fuerza sostiene átomos juntos durante un tiempo suficientemente largo para crear una entidad estable e independiente, esa fuerza se describe como un enlace químico.
    • Los 118 elementos químicos conocidos interactúan unos con otros vía enlaces químicos para crear nuevos compuestos únicos que tienen un diferentes propiedades químicas y físicas en comparación a los elementos que los componen.
    • Es útil pensar de el enlace químico como una escala móvil, en donde en un extremo hay puros enlaces covalentes y en el otro hay enlaces iónicos. La mayoría de enlaces químicos están en alguna posición entre esos dos extremos.
    • Cuando un enlace químico se forma entre dos elementos, las diferencias en la electronegatividad de átomos determina en un que parte de la escala móvil cae el enlace. Diferencias grandes en electronegatividad favorecen enlaces iónicos, ninguna diferencia crea enlaces no-polares, y una diferencia relativamente pequeña causa la formación de enlaces covalentes.
  • Chemical Equations
  • ¿Sabía usted que?

    Chemical equations are an efficient way to describe chemical reactions. This module explains the shorthand notation used to express how atoms are rearranged to make new compounds during a chemical reaction. It shows how balanced chemical equations convey proportions of each reactant and product involved. The module traces the development of chemical equations over the past four centuries as our understanding of chemical processes grew. A look at chemical equations reveals that nothing is lost and nothing is gained in a typical chemical reaction–matter simply changes form.

    Resumen

    Chemical equations are an efficient way to describe chemical reactions. This module explains the shorthand notation used to express how atoms are rearranged to make new compounds during a chemical reaction. It shows how balanced chemical equations convey proportions of each reactant and product involved. The module traces the development of chemical equations over the past four centuries as our understanding of chemical processes grew. A look at chemical equations reveals that nothing is lost and nothing is gained in a typical chemical reaction–matter simply changes form.

  • Ácidos y Bases
  • ¿Sabía usted que?

    ¿Sabia usted que algunos jugos y vinagres saben ácidos debido a las propiedades químicas del acido en esos líquidos? Y que cuando los ácidos y bases se mezclan juntos, siempre se contrarrestan entre ellos mismos, produciendo agua y sal?

    • NGSS
    • HS-C5.2, HS-PS1.A3, HS-PS1.B1
    Resumen

    Desde que los ácidos y bases se etiquetaron y describieron en el siglo XVII, la definición ha sido refinada a través de los siglos para reflejar el incremento en entendimiento de sus propiedades químicas, incluyendo reacciones de naturalización. Esta relación entre la concentración de iones de hidrogeno y el pH es mostrado junto con ejemplos diarios de ácidos y bases.

    Ir a módulo

  • Reacciones y Cambios

  • Reacciones Químicas 
  • ¿Sabía usted que?

    Did you know that chemical reactions happen all around us, such as when you light a match, start a car, or even take in a breath of air? But no matter the type of reaction, in every case a new substance is produced and is often accompanied by an energy and/or an observable change.

    Resumen

    This modules explores the variety of chemical reactions by grouping them into general types. We look at synthesis, decomposition, single replacement, double replacement, REDOX (including combustion), and acid-base reactions, with examples of each.

    • NGSS
    • HS-C5.4, HS-PS1.A2, HS-PS1.A3, HS-PS1.B3
    Conceptos Clave
    • Los pasos de una ciencia cualitativa a una cuantitativa eran cruciales en entender la química y las reacciones químicas mas completamente.
    • Cuando una sustancia o sustancias (los reactantes), pasan por un cambio que resulta en la formación de una nueva sustancia o sustancias (los productos), después una reacción química se dice que toma lugar.
    • La masa y la energía son conservadas en reacciones químicas. La materia no se crea ni se destruye, si no es conservada pero arreglada para crear nuevas sustancias. No se crea o destruye energía, es conservada pero comúnmente convertida en una diferente forma.
    • Reacciones químicas pueden ser clasificadas en diferentes tipos dependiendo de su naturaleza. Cada tipo tiene su propia característica que la define en términos de reactantes y productos.
    • Reacciones químicas son comúnmente acompañadas por cambios observables como cambios de energía, cambio de color, el lanzamiento de gas o la formación de un sólido.
    • La energía tiene un papel importante en reacciones químicas. Cuando la energía es liberada en los alrededores, la reacción se dice ser exotérmica, cuando la energía se absobre de los alrededores la reacción es endotérmica
  • Química Nuclear
  • ¿Sabía usted que?

    ¿Sabia usted de que el sol y las estrellas son reactores inmensos de fusión termonuclear? ¿Y que los átomos pueden separarse artificialmente, liberando energía que puede ser almacenada para generar poder eléctrico? Gracias a los pioneros en la química nuclear como Marie Curie, hemos llegado a entender diferentes tipos de radiación y reacciones nucleares.

    • NGSS
    • HS-C5.5, HS-PS1.C1, HS-PS3.A1
    Resumen

    Comenzando con el trabajo de Marie Curie y otros, este módulo traza el desarrollo de la química nuclear. Describe diferentes tipos de radiación: alfa, beta y gama. Este módulo después aplica los principios de la vida media al desintegración radioactiva y explica las diferencias entre fisión nuclear y fusión nuclear.

  • Química Orgánica
  • ¿Sabía usted que?

    Did you know that organic chemicals make up all the life forms we know of? Organic chemistry, defined by the carbon-hydrogen bond, is at the foundation of life. Because of the unique properties of the carbon atom, it can bond with other atoms in many different ways, resulting in millions of different organic molecules.

    • NGSS
    • HS-C6.2, HS-PS1.A3
    Resumen

    The chemical basis of all living organisms is linked to the way that carbon bonds with other atoms. This introduction to organic chemistry explains the many ways that carbon and hydrogen form bonds. Basic hydrocarbon nomenclature is described, including alkanes, alkenes, alkynes, and isomers. Functional groups of atoms within organic molecules are discussed.

    Ir a módulo


Top